Michigan Investment Network


Recent Blogs


Pitching Help Desk


Testimonials

"I made several great connections through your network. In fact, I was able to over fund my project. I also listed with another network that cost 3X as much and the leads were nowhere near as solid as the investors I met through this network. I will definitely only be using this network in the future. "
Jason A.

 BLOG >> Recent

Introduction to Bayes Theorem [Bayesian Inference
Posted on April 12, 2013 @ 12:18:00 PM by Paul Meagher

In this blog, I'll be doing a bit of algebra to show you that our conditional probability formula P(H|E) = P(H & E) / P(E) is equivalent to P(H|E) = P(E|H) * P(H) / P(E). This latter form of the equation is the version that people most often refer to as Bayes theorem. They are mathematically equivalent, however, in different circumstances it is easier to work with one versus the other. A Bayesian Angel Investor will need to master this Bayes theorem version of the conditional probability equation. This version of the equation includes a term P(E|H) called the likelihood term which is also critical for a Bayesian Angel Investor to understand and master. We will briefly discuss this term, leaving a more detailed discussion until next week when I will dedicate a blog to the likelihood concept.

The derivation of Bayes theorem follows naturally from the definition of conditional probability:

P(H|E) = P(H & E) / P(E)

Using some simple algebra (moving terms from one side to the other), this equation can be rewritten as:

P(H & E) = P(E | H) * P(E)

The same right-hand value can also be computed using E as the conditioning variable in the right-hand part of the equation:

P(H & E) = P(H | E) * P(E)

Given this equivalence, you can write:

P(H|E) * P(E) = P(E|H) * P(H)

We can now substitute P(E|H) * P(H) for P(H & E) and arrive at Bayes theorem:

P(H|E) = P(E|H) * P(H) / P(E)

Notice that this formula for computing a conditional probability is similar to the original formula with the exception that the joint probability P(H & E) that used to appear in the numerator has been replaced with an equivalent expression P(E|H) * P(H).

We can simplify this equation further by pointing out that P(E), the probability of the evidence, is just a mathematical convenience that ensures that when we compute all our conditional probabilities P(H|E), they collectively sum to 1. Conceptually, we can eliminate it from our equation by making the weaker claim that P(H|E) is proporational to P(E|H) * P(H):

P(H|E) ~ P(E|H) * P(H)

What this simplified equation is saying is that the probability of an hypothesis (e.g., startup success) given the evidence (e.g., tests diagnostic of startup success) is proportional to the likelihood of the evidence P(E|H) times the prior probability of the hypothesis P(H). When making decisions, we don't necessarily need to know the probability of success exactly, just that the success probability is quite a bit bigger than the failure probability. This is why this simpler version of Bayes theorem is still useful even though it only expresses a proportional relationship and not a full identity.

In order to update our prior probability of first-time startup success from .12 (or 12%) given the evidence of some diagnostic tests, we need to multiply our prior assessment of first time startup success P(H) by a factor called the likelihood P(E|H). The likelihood term is obviously doing alot of the heavy lifting in terms of updating our prior beliefs.

In my next blog, I will discuss how likelihoods can be computed from a data table using the conditional probability equation P(E|H) = P(E & H)/P(H) and other techniques. Some statisticians argue that likelihoods are good enough for decision making, that you don't have to incorporate prior probabilities P(H) into calculations to figure out the most probable outcome. These statisticians are afraid of introducing a subjective element (e.g., your prior assessment P(H) of the relative probability of different outcomes) into decision making. Bayesians argue that this subjective element makes the probability calculations more intelligent and contextually sensitive. An angel investor with lots of business experience should have at their disposal a mathematical tool that allows them to use their experience in making startup investment decisions. Bayesian inference techniques offer the promise of being that tool.

Permalink 

 Archive 
 

Archive


 November 2023 [1]
 June 2023 [1]
 May 2023 [1]
 April 2023 [1]
 March 2023 [6]
 February 2023 [1]
 November 2022 [2]
 October 2022 [2]
 August 2022 [2]
 May 2022 [2]
 April 2022 [4]
 March 2022 [1]
 February 2022 [1]
 January 2022 [2]
 December 2021 [1]
 November 2021 [2]
 October 2021 [1]
 July 2021 [1]
 June 2021 [1]
 May 2021 [3]
 April 2021 [3]
 March 2021 [4]
 February 2021 [1]
 January 2021 [1]
 December 2020 [2]
 November 2020 [1]
 August 2020 [1]
 June 2020 [4]
 May 2020 [1]
 April 2020 [2]
 March 2020 [2]
 February 2020 [1]
 January 2020 [2]
 December 2019 [1]
 November 2019 [2]
 October 2019 [2]
 September 2019 [1]
 July 2019 [1]
 June 2019 [2]
 May 2019 [3]
 April 2019 [5]
 March 2019 [4]
 February 2019 [3]
 January 2019 [3]
 December 2018 [4]
 November 2018 [2]
 September 2018 [2]
 August 2018 [1]
 July 2018 [1]
 June 2018 [1]
 May 2018 [5]
 April 2018 [4]
 March 2018 [2]
 February 2018 [4]
 January 2018 [4]
 December 2017 [2]
 November 2017 [6]
 October 2017 [6]
 September 2017 [6]
 August 2017 [2]
 July 2017 [2]
 June 2017 [5]
 May 2017 [7]
 April 2017 [6]
 March 2017 [8]
 February 2017 [7]
 January 2017 [9]
 December 2016 [7]
 November 2016 [7]
 October 2016 [5]
 September 2016 [5]
 August 2016 [4]
 July 2016 [6]
 June 2016 [5]
 May 2016 [10]
 April 2016 [12]
 March 2016 [10]
 February 2016 [11]
 January 2016 [12]
 December 2015 [6]
 November 2015 [8]
 October 2015 [12]
 September 2015 [10]
 August 2015 [14]
 July 2015 [9]
 June 2015 [9]
 May 2015 [10]
 April 2015 [9]
 March 2015 [8]
 February 2015 [8]
 January 2015 [5]
 December 2014 [11]
 November 2014 [10]
 October 2014 [10]
 September 2014 [8]
 August 2014 [7]
 July 2014 [5]
 June 2014 [7]
 May 2014 [6]
 April 2014 [3]
 March 2014 [8]
 February 2014 [6]
 January 2014 [5]
 December 2013 [5]
 November 2013 [3]
 October 2013 [4]
 September 2013 [11]
 August 2013 [4]
 July 2013 [8]
 June 2013 [10]
 May 2013 [14]
 April 2013 [12]
 March 2013 [11]
 February 2013 [19]
 January 2013 [20]
 December 2012 [5]
 November 2012 [1]
 October 2012 [3]
 September 2012 [1]
 August 2012 [1]
 July 2012 [1]
 June 2012 [2]


Categories


 Agriculture [77]
 Bayesian Inference [14]
 Books [18]
 Business Models [24]
 Causal Inference [2]
 Creativity [7]
 Decision Making [17]
 Decision Trees [8]
 Definitions [1]
 Design [38]
 Eco-Green [4]
 Economics [14]
 Education [10]
 Energy [0]
 Entrepreneurship [74]
 Events [7]
 Farming [21]
 Finance [30]
 Future [15]
 Growth [19]
 Investing [25]
 Lean Startup [10]
 Leisure [5]
 Lens Model [9]
 Making [1]
 Management [12]
 Motivation [3]
 Nature [22]
 Patents & Trademarks [1]
 Permaculture [36]
 Psychology [2]
 Real Estate [5]
 Robots [1]
 Selling [12]
 Site News [17]
 Startups [12]
 Statistics [3]
 Systems Thinking [3]
 Trends [11]
 Useful Links [3]
 Valuation [1]
 Venture Capital [5]
 Video [2]
 Writing [2]